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The size effects due to changes in gauge length and the influence of the fragmentation
phenomenon in fibrous structures are examined. First, a theoretical analysis of the
differences of the size effects in single fibre and in a fibrous structure is conducted. Then
comprehensive experimental work is presented on single fibres, fibre bundles, and twisted
yarns which can be considered as pseudo-composites. Next a comparison is made between
the theoretical predictions and the experimental data. Causes for the size effect in a fibrous

structure are explored. © 17998 Chapman & Hall

1. Introduction

In many practical applications, especially in the air-
craft and civil engineering industries, full scale testing
is very costly or sometimes impossible to conduct.
Hence, it is an extremely useful pursuit to find ways by
which such testing can be reduced in scale without the
loss of original physics. Establishment of the connec-
tions between two physical systems differing only in
scale thus becomes highly desirable.

The size or length effect in single fibres has been well
recognized and thoroughly studied. This effect is ob-
served not only with flaw-sensitive brittle fibres [6],
but also ductile polymer fibres [19]. Furthermore, it is
now widely accepted that the fibre strength—length
relationship can be described by the Weibull statistical
model [26].

For fibrous structures such as textiles, paper and
fibre-reinforced composites, the issue becomes a little
more complex. The size effect in textile yarns was first
studied by Peirce [20] who proposed the “weakest
link” theory to characterize it. The size effect on com-
posite strength has also grown into a very active area
for research with numerous studies being published
[1-3,6-8,11,16,21-23,27,28]. Yet, the existence of
this effect in fibrous structure seems to have become
less certain after some recent theoretical investigations
brought ambiguity into the problem. It has become
well known that, in a fibrous structure under exten-
sion, fragmentation occurs prior to the failure of the
structure. As a result, the fibres will eventually break
into much shorter lengths, better known as the critical
length [, before complete system failure. Therefore,
the new theories on the strengths of composites [8,24]
or textile yarns [18] have predicted that the ultimate
strength of a fibrous structure should be calculated by
scaling the structure length down to this critical
length. The strength thus predicted is closer to the
actual value, and much higher than the strength cal-

0022-2461 © 1998 Chapman & Hall

culated based on the original structure length /;. How-
ever, according to these theories, the strength of
a fibrous structure would be, as claimed in [7], inde-
pendent of the structure length or size, determined
chiefly by I, which is generally not related to /;. How-
ever, this conclusion is in conflict with some of the
experimental findings, for example [20,28]. Zweben
[28] has listed many results as evidence for a size
effect. Also he has explored the reasons why the size
effect in composites has not been widely recognized
and the implications of the size effect for composite
applications.

It is the purpose of this study to investigate the issue
of size effect on the strengths of fibrous structures.
Through both theoretical and experimental ap-
proaches, we will examine the existence of the size
effect in fibrous structure, and explain the differences
of size effect on the tensile strengths of fibres, fibre
bundles and twisted fibre bundles or yarns.

Previously Pan has pointed out the similarities be-
tween a fibre-reinforced composite and a twisted yarn
[18]. Mechanistically, a twisted yarn can be treated as
a composite where individual fibres are embedded in
the matrix formed by neighbouring fibres. The only
major difference between the two structures lies in the
nature of the fibre-matrix bonding. In a composite,
bonding is largely chemical whereas in a yarn is entire-
ly frictional. Therefore, although only yarn samples
were used in this study, the conclusions we draw from
this study are valid for fibre-reinforced composites as
well.

2. Size effect on fibre and bundle strengths
It has been widely accepted that for brittle fibres such
as glass, ceramic, carbon, and some polymer fibres
[19], the strength cummulative probability distribu-
tion obeys the Weibull function. Namely, for a fibre of
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length [;, the probability of the fibre strength being
oy is given by

F(og) =1 — exp[ — saof] (1)

where o is the scale parameter and [ is the shape
parameter of the fibre and both are independent of the
fibre length /;. The shape parameter B is an indicator of
the fibre strength variation. A higher B value corres-
ponds to a lower variance, and when B — oo, the fibre
variation would approach zero and its strength would
become independent of its length.

The mean or the expected value of the fibre strength
&¢ can then be calculated as

6f - (lf a)_l/BF<1 + %) (2)

where I'() is the Gamma function, and the standard
deviation of the strength is

r<1+3> :
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Note that, as pointed out in [25], Equation 1 may not
always be accurate for some fibres; it may over-
estimate the strength for shorter fibre lengths while
underestimating it for longer lengths. However, we
can state that the present analysis focuses only on
fibres whose strength distributions are strictly Weibull
forms. In addition, we have tested validity of Weibull
function for the three types of polymeric fibres used in
this study, and the results are satisfactory [19].

Then according to Daniels in [9], for a fibrous
system where N fibres form a parallel bundle with no
interaction between individual fibres, the density dis-
tribution function of the bundle strength o, ap-
proaches a normal form

_ 1 (o, — 6,)°
H(cy) =ne, exp[—zi(aﬁ] “4)

where G, is the expected value of the bundle strength

5, = (I aB)‘“f‘exp(— %) 5

and O, is the standard deviation of the strength

0] = (lfocB)Z/B|:exp<— % >} [1 — exp(— % >}N1

(6)

It is well recognized that the expected strength of
a fibre bundle is lower than that of the fibre by a factor
®, which is the ratio of Equations 2 and 5, and is
sometimes called the “Coleman factor” [4]

Conly(iog) o

The strength variation of the fibre bundle is also
smaller, depending among other factors on N, than
that of the fibre given in Equation 3.

The size effect can be better specified by the deriva-
tive of strength with respect to length. Then for

Qi

O =

Qi
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The ratio of the two gives, somewhat surprisingly, the
same result as in Equation 7

s 1 1
O = % — (B) /ﬁexlo(B >r<1 v [—3> (10)

In other words, the “Coleman factor” ® is both
a strength ratio and a size effect ratio between the fibre
and fibre bundle.

So several interesting points can be made about the
“Coleman factor™

1. @ specifies the translation efficiency from fibre
strength into bundle strength. A higher @ value indi-
cates a greater discrepancy between fibre and bundle
strengths, i.e. a lower translation efficiency of fibre
strength into bundle strength.

2. ® also specifies difference in sensitivity of the size
effect on the strengths between fibre and fibre bundle,
or the degree that the size effect becomes attenuated or
suppressed in the fibre bundle compared with single
fibres. Since it is easy to prove that ® > 1, it reveals
there is a greater size effect on the fibre strength than
on the bundle strength, or a higher size effect attenu-
ation on the bundle strength.

3. @ is determined solely by the fibre shape para-
meter . Therefore, B is not only a reflection of
strength variation along the fibre, but also a measure
of the fibre strength translation efficiency, and of the
size effect attenuation on fibre bundle strength.

4. Tt is clear from the above results that one cannot
achieve a high strength translation efficiency (a smaller
® value) and a low size effect (a higher ® value) at the
same time when using fibres to form a fibre bundle,
and a compromise has to be reached between the two
conflicting requirements.

For better illustration, Fig. 1 shows a graph of
@ against . The whole curve can be divided into three
portions. According to [5], the first portion where
B < 4 corresponds to the brittle fibres, and the third
portion B > 20 the ductile fibres. The intermediate
portion represents the fibres in between. So a brittle
fibre with a high ® value will have a poor strength
translation efficiency, but a good size effect attenuat-
ing ability on strength when forming a fibre bundle. In
other words, the fibre bundle will have a lower
strength but less size effect than the fibre.

3. The size effect in a fibrous structure

It has become known that fibres, once embedded into
a composite or twisted into a yarn, will behave differ-
ently due to a fibre—matrix or fibre—fibre interaction,
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Figure 1 Coleman factor versus fibre Weibull shape parameter f3.

and this interaction will inevitably alter the properties
of the fibres.

According to Pan [18], if a twisted filament yarn is
treated as a chain of twisted fibre bundles of critical
length [, the expected strength o, for the yarn can be
expressed finally as

S, =n,Vi(lap)”Fexp <_ % > (11)

where V¢ is the fibre-volume fraction in the yarn. n, is
the so-called orientation efficiency factor reflecting the
fact that fibres in a twisted yarn are oriented in various
directions instead of being parallel to the yarn axis.
This factor is a function of ¢ where ¢ is the fibre helix
angle at the yarn surface.

The critical length [, is also given in [18]. If oy, is
the tensile stress which causes the fibre to break, it
follows that

__ Tt Orp
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le

(12)

where r¢ is the fibre radius, 1 is the frictional coefficient
between fibres and g the local lateral pressure.

It is known that for a given breaking strain, the
theoretical value of [, will always be a constant, and so
are the values of n, and V;. Therefore, it can be
deduced from Equation 11 that the yarn strength will
be an invariant as well as being independent of the
original fibre length [;.

Furthermore, for a continuous filament yarn, its
strength will be enhanced at the initial increase of the
twist on the yarn because of the fragmentation process

[18]. On the other hand, as the yarn twist level in-
creases, the value of m, decreases [12] so that the
so-called “fibre obliquity” effect will cause the yarn
strength to decline at high twist level. Therefore, there
is an optimal twist level at which the yarn strength
reaches the maximum because of the interactions of
the two competing factors.

Finally, it can be readily proved according to statis-
tics theory that the standard deviation of the twisted
yarn O, is related to ©, in the parallel bundle case as

0, =Vm,0, (13)

When the yarn surface helix angle ¢ =0, n, =1 and
we will have the parallel bundle case. When the fibre-
volume fraction V; =1, the value of ®, will reduce
to O,.

3.1. Experimental Investigation

A series of tensile tests on single fibres, fibre bundles
and yarns were carried out to validate the conclusions
drawn from the above theoretical analysis.

3.2. Fibre sample description

Three types of filaments, polypropylene (PP), polyes-
ter (PET) and nylon 66 manufactured by BASF were
selected for the project. Details of these fibres are
provided in Table 1.

3.3. Yarn sample preparation and test

All the specimens were prepared and tested according
to the standard method ASTM D2101-93 for single
fibres, and ASTM D2256-80 for fibre bundles and
yarns.

The parallel fibre bundles for each fibre type were
taken directly from the filament package. The bundle
size (number of filaments in the bundle) was 120 for
PP, and 102 for PET and nylon 66. The yarns were
prepared using fibre bundles twisted on a twist tester.
The twist levels were adjusted according to fibre type
as indicated in tables where TF, the twist factor as
defined in [13], is used to designate the twist level.
When TF =0, there is no twist on the yarn, and the
yarn is a parallel fibre bundle. For a given yarn, the
higher the TF value, the more twist per length in the
yarn.

All specimens were preconditioned prior to test so
that the fibres would reach the standard atmospheric

TABLE I Fibre descriptions

Fibre type
PP PET Nylon 66
Fibre density p; (gem™3) 091 1.36 1.14
Fibre denier (g/9000 m) 3.830 5.222 2.144
Fibre Weibull scale
parameter o(1/mmGPa®) 8052420 2267x107 24.105
Fibre Weibull shape
parameter 13.158 17.509 12.700
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equilibrium of 65% RH and 21°C and the tapes
holding specimen ends would be cured adequately to
prevent fibre slippage.

All tests were carried out on an Instron testing
machine with computerized data acquisition and anal-
ysis software. For a gauge length of 50 mm, no less
than 30 tests were completed for each result. For other
gauge lengths, results were obtained by averaging at
least 10 tests. For all different gauge lengths, a con-
stant rate of strain at 100% min was used.

4. Analysis of test results
The strengths of the fibre types tested at four different
gauge lengths are shown in Table II, and the results
for the yarns made from these fibres at four gauge
lengths and four twist levels are given in Tables III, IV
and V. As mentioned previously, the yarn strength at
the twist level TF = 0 gives the fibre bundle strength.
From the data, several observations can be made.
First, the fibre strengths are always greater than the

TABLE II Fibre strengths and their sp values (GPa)

corresponding bundle strengths as expected. The same
can be said also about their standard deviations as
reflected in Equations 3 and 6.

The yarn strength is also always smaller than the
fibre strength, and the discrepancies depend on the
extent to which the fragmentation process reaches
saturation. The yarn strength also can be lower than
the bundle strength if the fibre obliquity effect be-
comes dominant. It can be seen from Tables III, IV
and V that there is indeed an optimal twist level,
around TF = 20, where maximum yarn strength is
achieved for all three fibre types.

In addition, the “Coleman factor” values defined in
Equation 10 are calculated in Table VI for the three
fibre types as well as at different gauge lengths. In the
table, the theoretical values @, of the “Coleman factor”
which as seen in Equation 10 is supposedly length-
independent are included in the parentheses, and the
values of the “Coleman factor” calculated using the
experimental data corresponding to different gauge
lengths are listed in the table. It can be seen that the

Gauge length (mm)

10 20 50 100
PP 0.381 (0.054) 0.375 (0.036) 0.361 (0.033) 0.304 (0.035)
PET 0.304 (0.016) 0.302 (0.014) 0.295 (0.020) 0.285 (0.018)
Nylon 0.619 (0.026) 0.549 (0.054) 0.545 (0.033)

TABLE III PP yarn strengths and their sp values (GPa)

Gauge length (mm)

5 10 50 100
TF=0 0.356 (0.020) 0.343 (0.016) 0.320 (0.025) 0.299 (0.010)
TF =20 0.374 (0.023) 0.373 (0.014) 0.360 (0.037) 0.360 (0.050)
TF =40 0.317 (0.018) 0.308 (0.025) 0.302 (0.028) 0.294 (0.023)
TF =60 0.242 (0.035) 0.175 (0.034) 0.240 (0.042) 0.223 (0.058)
TABLE IV PET yarn strengths and their sp values (GPa)
Gauge length (mm)
5 10 50 100
TF=0 0.253 (0.013) 0.248 (0.008) 0.245 (0.008) 0.239 (0.008)
=10 0.289 (0.011) 0.275 (0.013) 0.271 (0.010) 0.265 (0.007)
TF =20 0.287 (0.008) 0.296 (0.010) 0.282 (0.009) 0.297 (0.025)
TF =40 0.294 (0.011) 0.295 (0.010) 0.288 (0.009) 0.272 (0.008)
TABLE V Nylon yarn strengths and their sp values (GPa)
Gauge length (mm)
5 10 50 100
TF=0 0.540 (0.012) 0.537 (0.008) 0.490 (0.013) 0.483 (0.007)
TF=5 0.549 (0.010) 0.537 (0.017) 0.492 (0.027) 0.508 (0.009)
=10 0.547 (0.007) 0.528 (0.015) 0.520 (0.011) 0.513 (0.007)
TF =20 0.547 (0.007) 0.558 (0.011) 0.501 (0.013) 0.526 (0.022)
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empirical “Coleman factor” values remain roughly
constant for the different gauge lengths, supporting
the theoretical prediction. However, the theoretical
®, value is in general greater than the experimental
result for every fibre type for reasons still to be ex-
plored. In other words, the theory predicts a higher
fibre strength translation efficiency and a lower size
effect sensitivity, than the actual levels. Because ® > 1
in Table VI for all cases, it reflects on the one hand
that the fibre strength is greater than the bundle
strength, and on the other hand that the size effect in
a fibre bundle is always less significant than that in
a single fibre.

To facilitate the discussion, we have normalized all
the strength data, as shown in Tables VII, VIII and IX
using each respective value at the common lowest
gauge length 10 mm. The data in these tables basically
provide indications of strength—gauge length sensitiv-
ity for the specimens.

It can be said, based on the data, that the size effect
on yarn strength does exist, but the effect is in general
smaller in comparison with those either on fibre
bundle or on single fibre. Take PP fibre type in
Table VII as an example. When gauge length increases
10 times from 10mm to 100mm, the fibre strength
drops by more than 20%, whereas the fibre bundle
strength reduces by 13%, consistent with the theoret-

TABLE VI The theoretical and experimental “Coleman factor”
values

Gauge length (mm) ®

10 50 100
PP (O, = 1.262) 1.111 1.128 1.017
PET (9, = 1.210 1.226 1.204 1.192
NYLON (&, = 1.269) 1.153 1.120 1.128

TABLE VII PP fibre and yarn relative strengths

Gauge length (mm)

10 20 50 100
PP fibre 1.000 0.984 0.948 0.798
TF=0 1.000 0.933 0.872
TF =20 1.000 0.965 0.965
TF =40 1.000 0.981 0.955
TF =60 1.000 1.371 1.274

TABLE VIII PET fibre and yarn relative strengths

Gauge length (mm)

10 20 50 100
PET fibre 1.000 0.993 0.970 0.938
TF=0 1.000 0.988 0.964
TF =10 1.000 0.985 0.964
TF =20 1.000 0.953 1.003
TF =40 1.000 0.976 0.922

TABLE IX Nylon fibre and yarn relative yarn strengths

Gauge length (mm)

10 20 50 100
Nylon fibre 1.000 0.887 0.880
TF=0 1.000 0.912 0.899
TF =20 1.000 0.916 0.946
TF =40 1.000 0.985 0.972
TF =60 1.000 0.898 0.943

ical prediction that the size effect on bundle strength is
less significant than on fibre strength. The yarn
strength on the other hand at TF = 20 reduces by
only 4%. A similar trend can be seen in the case of
PET and nylon fibre types of Tables VIII and IX,
respectively, except that irregular fluctuation of yarn
strength occurs in these cases so that the yarn
strengths occasionally are not the highest at the short-
est gauge length. This irregularity may be partly
caused by experimental error, but it also provides
further evidence that the length or size effect is not as
dominant on yarn strength as it is on fibre bundle or
fibre strength. Experimental errors occur in all three
cases. However, the size effect on fibre bundle or fibre
strength is so prevailing that it overshadows the influ-
ence of possible experimental errors so that we can see
a definite strength dependence on sample length.
Another cause for the fluctuation of yarn strength is
likely caused by the probabilistic nature of yarn frac-
ture process during which load sharing between the
broken and still-surviving fibres, the impact and stress
concentration brought in by individual fibre breakage
all add uncertainty into the results, leading to the
irregularities shown above.

4.1. Some explanations for the size effect on
yarn strength

According to the theory in Equation 11, the yarn
strength is determined by the critical length [, a con-
stant for a given structure, and should be independent
of the original fibre length. This is, however, some-
times in disagreement with the experimental data in
the tables. The main reason responsible for this con-
tradiction can be found from the fact that the critical
length I, in a real fibrous structure is in fact not
a constant, but follows a certain distribution.

First, in the case where the fibrous structure fails
before the fragmentation process reaches saturation,
the final lengths of the fibre fragments will be longer
than [, and will not be constant but statistically dis-
tributed. This variation of the fibre fragment lengths
will lead to the variation of the yarn strength at
different yarn cross-sections. Then the strength of the
structure is determined by the strength of its weakest
cross-section which is, according to the weakest link
theory, related to the yarn length. This stochastic
nature of the fibre fragment length will also explain
the fluctuation of the yarn strength.

Furthermore, during the extension of a fibrous
structure, even if the fragmentation process indeed
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reaches saturation, by definition any fibre fragment
with length longer than [, is still able to break some-
where along its centre section as its stress exceeds its
current strength. So the actual fragment lengths vary
in the range of [./2 to I, [14] [17]. Then for the same
reason as above, this variation will cause minor size
effect and fluctuation on yarn strength.

To sum up, the size effect for a fibrous structure can
be attributed to the size effects brought in by fibres,
fibre—fibre interactions, the fragmentation process,
and non-uniformity associated with local failure, local
property or state perturbations which can be treated
as macro-defects distributed along the structure.

5. Conclusions

This study confirms that there is a size effect existing
on the strength of a fibrous structure including com-
posite and yarns. It is caused mainly by the variation
of the critical length [, and is less significant com-
pared with the size effect on either bundle or fibre
strength.

It has been demonstrated that the Coleman factor
® not only reflects the translation efficiency from fibre
strength into bundle strength, but also the difference
of sensitivity of the size effect on the strengths between
fibre and fibre bundle, or the degree that size effect
being attenuated or suppressed in bundles compared
with that in single fibres. A higher ® value indicates
a greater discrepancy between fibre and bundle
strengths, i.e. a lower translation efficiency of fibre
strength into bundle strength, but a greater size
effect on the fibre strengths than on the bundle
strength, or a higher size effect attenuation on the
bundle strength.

Because @ is determined solely by the fibre shape
parameter B, this parameter, hence, is not only a re-
flection of strength variation along fibre, but also
a measure of the fibre strength translation efficiency
and of the size effect attenuation on bundle strength.

It is clear from the above results that one cannot
achieve a high strength translation efficiency (a smaller
® value) and a low size effect (a higher @ value) when
using fibres to form a fibre bundle, and a compromise
has to be reached between the two requirements.
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